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1 Preliminaries

1.1 The upper half plane H
(i) As a set, the upper half plane is given by

H = {z ∈ C : Im(z) > 0}.

(ii) A hyperbolic line in the upper half plane model is defined to be one of
the following two types of subsets of H.

(1) The intersection of a Euclidean line perpendicular to the real line
R (i.e the X-axis) with H.

(2) The intersection of a Euclidean circle centered on the real line R
(i.e the X-axis) with H.

(iii) Two hyperbolic lines are said to be parallel if they do not intersect in
H.

(iv) Given a line ` ⊂ H and point a p ∈ H \`, there exists infinitely many
hyperbolic lines passing through p and parallel to `. Consequently, the
fifth postulate of Euclidean geometry does not hold true in hyperbolic
geometry.

1.2 The Riemann sphere Ĉ
(i) As a set, the Riemann sphere Ĉ is the union

Ĉ = C∪{∞}.

(ii) There is a natural extension of the stereographic projection p : S2 \
{N} → C to a map p̄ : S2 → Ĉ defined by

p̄|C = p and p̄(N) =∞,

which is a homeomorphism. Hence, topologically Ĉ ≈ S2 via p̄.

(iii) For a point z ∈ Ĉ, an open ball (or disk) Bε(z) of radius ε centered at
z is defined by

Bε(z) =

{
{w ∈ C : |w − z| < ε}, if z ∈ C, and

{w ∈ C : |w| > ε} ∪ {∞}, if z =∞.
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(iv) We define

Homeo(Ĉ) = {f : Ĉ→ Ĉ : f is a homeomorphism}.

The set Homeo(Ĉ) forms a group under composition.

(v) Example: The function r : Ĉ→ Ĉ defined by

r(z) =


1/z, if z ∈ C,
∞, if z = 0, and

0, if z =∞

is an element of Homeo(Ĉ).

(vi) A circle in Ĉ either a Euclidean circle or the union of a Euclidean line
with {∞}.

(vii) Example: The set R̄ := R∪{∞} is a circle in Ĉ.

(viii) The set R̄ := R∪{∞} is called the boundary at infinity of hyperbolic
space H. Topologically, we can see that R̄ ≈ S1 by naturally extending
the stereographic projection in dimension 1.

(ix) For a set A ⊂ H, the boundary at infinity is defined by

∂∞(A) := Ā ∩ R̄,

where Ā is the closure of A in Ĉ.

(x) Two hyperbolic lines `1 and `2 are said to be ultraparallel if

∂∞(`1) ∩ ∂∞(`2) = ∅.

(xi) Given a point p ∈ H and a point q ∈ R̄, there exists a unique hyperbolic
line ` passing through p such that ∂∞(`) = {q}. Consequently, there is
a unique circle in Ĉ that contains a line ` in H.
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2 The general Möbius group

2.1 The group Möb+(Ĉ)

(i) We define

Homeoc(Ĉ) = {f ∈ Homeo(Ĉ) : f maps circles in Ĉ to circles in Ĉ}.

(ii) Homeoc(Ĉ) forms a group under composition.

(iii) Examples:

(a) The map r ∈ Homeoc(Ĉ).

(b) For a, b ∈ C and a 6= 0, consider the map f ∈ Homeo(Ĉ) defined
by

f(z) = az + b, for z ∈ C and f(∞) =∞.

Then f ∈ Homeoc(Ĉ).

(iv) A Möbius transformation is a function f : Ĉ→ Ĉ of the form

m(z) =
az + b

cz + d
, where a, b, c, d ∈ C and ad− bc 6= 0.

(v) Consider a Möbius transformation m(z) =
az + b

cz + d
.

(a) If c = 0, then m(z) =
a

d
z +

b

d
.

(b) If c 6= 0, then m(z) = (f ◦ r ◦ g)(z), where g(z) = c2z + cd and
f(z) = −(ad− bc)z + a

c
, and f(∞) =∞ = g(∞).

Consequently, m ∈ Homeoc(Ĉ).

(vi) The set of all Möbius transformations on Ĉ forms a group under compo-
sition, which we denote by Möb+(Ĉ). Clearly, Möb+(Ĉ) ⊂ Homeoc(Ĉ).

(vii) If m ∈ Möb+(Ĉ) fixes any three distinct points in Ĉ, then m is the
identity.
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(viii) Given four distinct points z1, z2, z3, and z4 in C, we define the cross
ratio of z1, z2, z3, and z4 by

[z1, z2; z3, z4] =
(z1 − z4)(z3 − z2)

(z1 − z2)(z3 − z4)
.

If one of the zk (say z1) equals ∞, then we define the cross ratio by
continuity, that is,

[∞, z2; z3, z4] = lim
z→∞

[z, z2; z3, z4] =
z3 − z2

z3 − z4

.

(ix) Given a triple (z1, z2, z3) of distinct points in Ĉ, there exists a unique
m ∈ Möb+(Ĉ) such that (m(z1),m(z2),m(z3)) = (0, 1,∞), which is
given by

m(z) = [z, z3; z2, z1].

Consequently, the natural action of Möb+(Ĉ) on the set of T of triple
of distinct points in Ĉ is uniquely transitive.

(x) Möb+(Ĉ) acts transitively on the set C of circles in Ĉ, and on the set
D of disks in Ĉ.

2.2 Classification of Möbius transformations

(i) Two Möbius transformations m1,m2 ∈ Möb+(Ĉ) are said to be conju-
gate if there exists p ∈ Möb+(Ĉ) such that m2 = p ◦m1 ◦ p−1.

(ii) As az+b
cz+d

= z yields a quadratic equation in z, an m ∈ Möb+(Ĉ) can

have at most 2 fixed points in Ĉ.

(iii) A Möbius transformation m ∈ Möb+(Ĉ) is said to be:

(a) parabolic, if has only one fixed point in Ĉ and is conjugate to the
map m′(z) = z + 1.

(b) elliptic, if has two fixed points in Ĉ and is conjugate to the map
m′(z) = az, where |a| = 1, that is, a = ei2θ, for some θ ∈ [0, π).

(c) loxodromic, if has two fixed points in Ĉ and is conjugate to the
map m′(z) = az, where |a| 6= 1, that is, a = rei2θ, for some r > 0
and θ ∈ [0, π).
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(iv) We can view a Möbius transformation m(z) = az+b
cz+d

, as the map

z
m7−→
(
a b
c d

)(
z
1

)
, where

(
a b
c d

)
∈ GL(2,C).

Hence, there exists a natural surjective map

ϕ : GL(2,C)→ Möb+(Ĉ)

defined by (
a b
c d

)
ϕ7−→ (z 7→ az + b

cz + d
),

where ϕ is a homomorphism. Moreover, we have that

Kerϕ = {kI2 : k ∈ C}.

Consequently,

Möb+(Ĉ) ∼= PGL(2,C) = PSL(2,C).

(v) Given a Möbius tranformation m(z) = az+b
cz+d

, the equivalent Möbius
tranformation

m(z) =
a
D
z + b

D
c
D
z + d

D

, where D = ad− bc,

is called the normalized form of m.

(vi) Given a Möbius tranformation m(z) = az+b
cz+d

in its normalized form, we
define

Trace2(m) := (a+ d)2.

(vii) Let m be a Möbius transformation that is not the identity. Then:

(i) m is parabolic if, and only if Trace2(m) = 4.

(ii) m is elliptic if, and only if Trace2(m) ∈ [0, 4).

(iii) m is loxodromic if, and only if either Im(Trace2(m)) 6= 0 or
Trace2(m) ∈ (−∞, 0) ∪ (4,∞).
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2.3 The group Möb(Ĉ)

(i) The complex conjugation map C : Ĉ→ Ĉ is defined by

C (z) = z̄, for z ∈ C and C (∞) =∞.

(ii) The map C is a reflection through the circle R̄ ⊂ Ĉ and clearly, C ∈
Homeoc(Ĉ) \Möb+(Ĉ).

(iii) Given a circle A ⊂ Ĉ, consider a m ∈ Möb(Ĉ) such that m(R̄) = A.
Then we define a reflection through A as the map

C A(z) = (m ◦ C ◦m−1)(z), for z ∈ Ĉ .

(a) Note that C A(z) is well defined as its independent of the choice of
m.

(b) Every element in Möb(Ĉ) is a composition of finitely many reflec-
tions through circles.

(iv) The general Möbius group Möb(Ĉ) is defined as the subgroup of Homeoc(Ĉ)
generated by Möb+(Ĉ) and C . Thus, by definition, Möb(Ĉ) ⊂ Homeoc(Ĉ).

(v) Every m ∈ Möb(Ĉ) either has the form m(z) = az+b
cz+d

or has the form

m(z) = az̄+b
cz̄+d

, for a, b, c, d ∈ C and ad− bc 6= 0.

(vi) Möb(Ĉ) = Homeoc(Ĉ).

(vii) Let S1 and S2 be surfaces. Then a map f : S1 → S2 is said to be
conformal if it preserves the angles, that is, given a two curves c1 and
c2 in S1 that intersect at P ∈ S1 with an angle θ, f(c1) and f(c2)
intersect at the same angle θ at f(P ).

(viii) A conformal map on an oriented surface is said to be directly confor-
mal if it preserves orientation, and indirectly conformal if it reverses
orientation.

(ix) Examples of conformal maps.

(a) Any self-homeomorphism of a closed orientable surface that is re-
alizable as a rotation of the surface about an axis is directly con-
formal.
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(b) Any self-homeomorphism of a closed orientable surface that is re-
alizable as a reflection of the surface through a plane is indirectly
conformal.

(c) The C is an indirectly conformal map of Ĉ.

(x) A map f : Ĉ → Ĉ is conformal at ∞ if, and only if r ◦ f is conformal
at 0.

(xi) Every element m ∈ Möb+(Ĉ) is directly conformal, while element m ∈
Möb(Ĉ) \Möb+(Ĉ) is indirectly conformal.

2.4 The groups Möb(H) and Möb+(H)

(i) We define

(a) Möb(H) = {m ∈ Möb(Ĉ) |m(H) = H}.
(b) Möb+(H) = {m ∈ Möb+(Ĉ) |m(H) = H}.
(c) Möb(R̄) = {m ∈ Möb(Ĉ) |m(R̄) = R̄}.
(d) Möb+(R̄) = {m ∈ Möb+(Ĉ) |m(R̄) = R̄}.

(ii) Every element of Möb(R̄) has one of the following forms:

(a) m(z) = az+b
cz+d

with a, b, c, d ∈ R (or iR) and ad− bc = 1.

(b) m(z) = az̄+b
cz̄+d

with a, b, c, d ∈ R (or iR) and ad− bc = 1.

(iii) Every element of Möb+(H) has the form

m(z) =
az + b

cz + d
with a, b, c, d ∈ R and ad− bc = 1,

while every element of Möb(H) \Möb+(H) has the form

m(z) =
az̄ + b

cz̄ + d
with a, b, c, d ∈ iR and ad− bc = 1.

Consequently, Möb+(H) ∼= PSL(2,R).
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3 Hyperbolic geometry

3.1 The upper-half plane model H
(i) We define the metric for the upper half plane model by

ds2 =
dx2 + dy2

y2
.

(ii) If γ : [a, b] → H is a path in H that is parametrized in [a, b] with
γ(t) = x(t) + iy(t), then the length `(γ) of the path γ is defined by

`H(γ) :=

∫ b

a

1

y(t)

√(
dx

dt

)2

+

(
dy

dt

)2

dt.

(iii) Given two points P,Q ∈ H, the distance dH(P,Q) between P and Q is
defined by

dH(P,Q) := inf `H(γ),

where the infimum is taken over all paths joining P and Q.

(iv) Let (M,d) be a metric space, and let I = [a, b]. A path γ : I → M is
said to be a geodesic from a to b if there is a constant c ≥ 0 such that
for any t ∈ I there exists a neighborhood J of t in I such that for any
t1, t2 ∈ J , we have

d(γ(t1), γ(t2)) = c |t1 − t2| .

In other words, the path γ : I →M is a geodesic if it is locally distance
minimizing.

(v) Let P,Q ∈ H.

(a) If ReP = ReQ, then there is a unique geodesic from P to Q given
by the vertical line segment from P to Q.

(b) If ReP 6= ReQ, then there is a unique geodesic from P and Q
given by the arc joining P to Q of the unique line in H (semicircle)
with center in R̄ and passing through P and Q.
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(vi) All vertical lines are geodesics in H. Moreover, if b > a, then for points
x+ ia, x+ ib ∈ H, we have

dH(x+ ia, x+ ib) = log(b/a).

(vii) Let Isom+(H) denote the group of orientation-preserving isometries of
H. Then

Isom+(H) ∼= PSL(2,R).

(viii) Given points P,Q ∈ H, let P ′ and Q′ be the end points in R̄ of the
unique geodesic in H joining P to Q. Then

dH(P,Q) = log[P ′, Q, P,Q′].

(ix) Given two points z1, z2,∈ H, we have

(a) dH(z1, z2) = log
|z1 − z̄2|+ |z1 − z2|
|z1 − z̄2| − |z1 − z2|

.

(b) cosh dH(z1, z2) = 1 +
|z1 − z2|2

2Imz1Imz2

.

3.2 The Poincaré disk model D
(i) As a set, the Poincaré disk D is defined by

D = {z ∈ C : |z| < 1}.

(ii) The metric in the Poincaré disk model is defined by

ds2 =
4(dx2 + dy2)

(1− (x2 + y2))2
.

(iii) If γ : [a, b] → D is a path in D that is parametrized in [a, b] with
γ(t) = x(t) + iy(t), then the length `(γ) of the path γ is defined by

`D(γ) :=

∫ b

a

2

1− r2

√(
dr

dt

)2

+ r

(
dθ

dt

)2

dt.
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(iv) Given two points P,Q ∈ H, the distance dD(P,Q) between P and Q is
defined by

dD(P,Q) := inf `D(γ),

where the infimum is taken over all paths joining P and Q.

(v) Let Möb+(D) = {m ∈ Möb+(Ĉ) : m(D) = D}. Each m ∈ Möb+(D) has
the form

m(z) =
eiθ(z − a)

1− āz
where a ∈ D,

or equivalently has the form

m(z) =
az + b

b̄z + ā
, with |a|2 − |b|2 = 1.

Consequently,
Möb+(D) ∼= PSU(1, 1).

(vi) The Cayley transformation C : H→ D defined by

z
C7−→ z − i
z + i

is a conformal isometry.

(vii) Let P,Q ∈ D.

(a) If P,Q are on the same diameter of D, then the unique geodesic
in D joining P to Q is given by the Euclidean line segment joining
P to Q (along the diameter).

(b) If P,Q do not lie on the same diameter, then the unique geodesic
in D joining P to Q is the arc of the circle orthogonal to S1 = ∂ D
joining P to Q.

(viii) All radial lines are geodesics in D. In particular, given a ∈ D, we have

dD(0, a) = log

(
1 + |a|
1− |a|

)
.

(ix) Given points P,Q ∈ D, let P ′ and Q′ be the end points in S1 of the
unique geodesic in D joining P to Q. Then

dD(P,Q) = log[P ′, Q, P,Q′].
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(x) Given two points z1, z2 ∈ D, we have

(a) dD(z1, z2) = log
|1− z1z̄2|+ |z1 − z2|
|1− z1z̄2| − |z1 − z2|

.

(b) cosh2(dD(z1, z2)/2) =
|1− z1z̄2|2

(1− |z1|2)(1− |z2|2)
.

3.3 Properties of hyperbolic space

(i) The spaces (H, dH) and (D, dD) have constant negative curvature −1.

(ii) (a) Given x ∈ ∂H, we have dH(x, x+ ti) =∞, for any t > 0.

(b) Given x ∈ ∂ D, we have dD(x, y) =∞, for any y ∈ D.

(iii) The group Isom+(H) (or Isom+(D)) acts transitively on:

(a) H (or D).

(b) Hyperbolic lines in H (or D).

(c) Equidistant pairs of points in H (or D).

(d) Ordered triples in ∂H = R̄ (or ∂ D = S1).

(iv) Let m ∈ Möb+(H) be nontrivial. Then it follows from classification of
isometries in Möb+(Ĉ) that:

(a) m is parabolic if, and only if m has one fixed point in R̄. Fur-
thermore, m is conjugate in Möb(H) to the map q(z) = z + 1.
Equivalently, m is parabolic if, and only if Trace2(m) = 4.

(b) m is elliptic if, and only ifm has one fixed point in H. Furthermore,
m is conjugate in Möb+(H) to a rotation by θ (i.e a map of the

form

(
cos θ sin θ
− sin θ cos θ

)
, for some θ ∈ R). Equivalently, m is elliptic

if, and only if Trace2(m) < 4.

(c) m is loxodromic if, and only if m has two fixed points in R̄. Fur-
thermore, m is conjugate in Möb+(H) to the map q(z) = kz,
for some k > 0. Equivalently, m is hyperbolic if, and only if
Trace2(m) > 4.
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(v) Let C(z0, r) denoted the hyperbolic circle with center z0 ∈ D and radius
r > 0. Then C(0, r) coincides with a Euclidean circle with center 0 and
radius ρ = tanh(r/2).

(vi) The circumference of a hyperbolic circle in D of radius ρ is 2π sinh(ρ).
The area of the hyperbolic disk of radius ρ if 4π sinh2(ρ/2). (Note that
both circumference and area grow exponentially with the radius.)

(vii) Since hyperbolic isometries map Euclidean circles to Euclidean circles,
the hyperbolic circle C(z0, r) will coincide with a Euclidean circle, whose
center does not necessarily coincide with the hyperbolic center. As
this reasoning extends to hyperbolic disks enclosed by these circles, the
topologies (D, dD) and R2 have the same basic open sets, and hence
they are homeomorphic.

(viii) There exists a unique perpendicular from a point P ∈ D (or H) to a
hyperbolic line L ⊂ D (orH) that realizes the distance between them.

(ix) A perpendicular projection onto a hyperbolic line L in H (or D) strictly
reduces the distance between points.

(x) Let L and L′ be disjoint hyperbolic lines which do not meet at ∂H (or
∂ D). Then L and L′ have a unique common perpendicular that realizes
the distance between them. Moreover, if the two lines have a common
end point in ∂H (or ∂ D), then dH(L,L′) = 0.

(xi) The set of all points in H (or D) which are at a fixed distance d from a
given line L is a circle in Ĉ having the same endpoints as L on ∂H (or
∂ D) making an angle θ = θ(d) that is uniquely determined by d.

(xii) An horocycle is the limit of a hyperbolic circle as its center approaches
∂H.

(xiii) In H, horocircles are either:

(a) Horizonal lines, if the tangency point is ∞, or

(b) Circles that are tangent to R.

(xiv) The length of a horocircle between two points is exponentially larger
than the hyperbolic distance between them.
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3.4 Hyperbolic trigonometry

(i) The sum of the angles of a hyperbolic triangle is strictly less than π.
Consequently, the sum of the angles of a hyperbolic n-gon is strictly
less than (n− 2)π.

(ii) Let P be a point that is at a distance d from a hyperbolic line L. Then
there is a limiting value θ to the angle made by lines L′ through P
(with the perpendicular from P to L) not meeting L called the angle
of parallelism.

(iii) The angle of parallelism θ can be computed by considering a triangle
with angles 0, π/2, θ. In such a triangle, we have

cosh d = csc θ.

Equivalently, we have

sinh d = cot θ or tanh d = cos θ.

(iv) There is an upper bound to the length of the altitude of any hyperbolic
isosceles right-angled triangle called the Schweikart’s constant, which is
given by log(1 +

√
2).

(v) (Pythagoras Theorem) In a right angled hyperbolic triangle whose sides
have lengths a, b, and c, where c is the hypotenuse, we have

cosh c = cosh a cosh b.

(vi) (Gauss-Bonnet Theorem) The area of a hyperbolic triangle with angles
α, β, and γ is given by

π − (α + β + γ).

Consequently, the area a hyperbolic n-gon with internal angles αi, for
1 ≤ i ≤ n is

(n− 2)π −
n∑
i=1

αi.

(vii) Two hyperbolic triangles T and T ′ are congruent if there exists m ∈
Möb(H) such that m(T ) = T ′.
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(viii) Any two hyperbolic triangles with the same internal angles are congru-
ent.

(ix) The following conditions for congruency of triangles in Euclidean ge-
ometry also hold true in hyperbolic geometry:

AAA, SAS, SSS, SAA, and RHS.

(x) For any three real numbers α, β, γ ≥ 0 with α+β+γ < π, there exists
an hyperbolic triangle with these numbers as internal angles.

(xi) For n ≥ 3 and θ ∈ (0, (n − 2)π/n), there exists a regular hyperbolic
n-gon with internal angle θ.

(xii) Let ABC be a hyperbolic triangle with sides of lengths a, b, c opposite
to internal angles α, β, γ at vertices A,B,C respectively. Then

(a) If γ = π/2, then

cos β = tanh a/ tanh c, sin β = sinh b/ sinh c, tan β = tanh b/ sinh a.

(b) The hyperbolic sine law is given by

sinh a

sinα
=

sinh b

sin β
=

sinh c

sin γ
.

(c) The first hyperbolic cosine law is given by

cos γ =
cosh a cosh b− cosh c

sinh a sinh b
.

(d) The second hyperbolic cosine law is given by

cos c =
cos γ + cosα cos β

sinα sin β
.

4 Introduction to hyperbolic surfaces

4.1 Hyperbolic structures on surfaces

(i) A hyperbolic surface is a smooth surface with a Riemannian metric such
that each point on the surface has a neighborhood that is isometric to
an open neighborhood of H.
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(ii) A hyperbolic structure on a surface S is an atlas of charts on S such
that:

(a) The image of every coordinate chart is homeomorphic to a disk in
H.

(b) The overlap functions are hyperbolic isometries.

(c) The atlas is maximal.

(iii) A convex geodesic polygon is a convex subset of H whose boundary is
a simple closed path of hyperbolic geodesic line segments.

(iv) Let P be a convex geodesic polygon. A labeling for each edge of P by
a letter (or a symbol) and an arrow (a direction) is called a decoration
for P.

(v) A gluing recipe for a hyperbolic surface is a finite list {P1, . . . , Pn} of
decorated polygons such that:

(a) Every symbol (or letter) used as a label appears exactly twice.

(b) If two edges have the same label, then they have the same hyper-
bolic length.

(c) Any complete circuit adds up to 2π.

(vi) Any gluing recipe gives rise to a surface with a hyperbolic structure
(i.e. a hyperbolic surface).

(vii) Examples.

(a) For g ≥ 2, consider a regular convex decorated hyperbolic 4g-gon Pg
with edges labeled using the letters in {ai, bi | 1 ≤ i ≤ g} such that
∂Pg =

∏g
i=1[ai, bi]. This decorated polygon Pg gives rise to a hyperbolic

structure on the closed orientable surface Sg of genus g.

(b) For g ≥ 2, consider a regular convex decorated hyperbolic 4g + 2-gon
Pg with edges labeled using the letters in {ai| 1 ≤ i ≤ 2g + 1} such
that ∂Pg =

∏2g+1
i=1 ai

∏2g+1
i=1 a−1

i . This decorated polygon Pg gives rise to
another hyperbolic structure on Sg that is non-isometric to the structure
in (a).
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4.2 Geodesic triangulations and the Gauss-Bonnet The-
orem

(i) Let X ⊂ H be a finite set. For each p ∈ X, let

Np = {y ∈ H : dH(y, p) = dH(x, y),∀x ∈ X}.

Then

(a) Np is convex.

(b) If Np is bounded, then Np is the interior of a convex hyperbolic
polygon.

(ii) A geodesic triangulation of a hyperbolic surface is a decomposition of
the surface into a finite union of hyperbolic geodesic triangles.

(iii) Every hyperbolic surface has a geodesic triangulation.

(iv) (Gauss-Bonnet) The hyperbolic area A(S) of a compact hyperbolic sur-
face S is given by

A(S) = −2πχ(S),

where χ(S) is the Euler characteristic of the surface. In particular, if
S is hyperbolic, then χ(S) < 0.

(v) For g ≥ 0, let Sg,b be the surface of genus g with b boundary components
(i.e. with b disjoint disks removed). If Sg,b is hyperbolic, then

A(Sg,b) = −2π(2− 2g − b).

Consequently, if Sg,b is hyperbolic, then 2g + b > 2.

4.3 The universal cover of a hyperbolic surface

(i) A Riemannian cover of a Riemannian manifold X is a Riemannian
manifold X̃ such that the covering map p : X̃ → X is a local isometry.

(ii) Suppose that X is a Riemannian manifold with a covering space p :
X̃ → X. Then there exists a unique (namely the pullback under p) on
X̃ such that p : X̃ → X is a local isometry.
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(iii) Let p : X̃ → X be a Riemannian covering space. If X is complete, then
so is X̃.

(iv) (Hadamard). Let X be a complete simply connected surface that is
locally isometric to H. Then X is globally isometric to H.

(v) A complete hyperbolic surface is universally covered by H.

(vi) A simple closed curve c on a hyperbolic surface S = Sg,b is called
essential, if its free homotopy class [c] does not contain the trivial curve
or any of the components of ∂Sg,b as its representatives.

(vii) Every free homotopy class [c] of an essential simple closed c on a hy-
perbolic surface S = Sg,b has a unique geodesic representative.
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