MTH 520/622: Introduction to Hyperbolic Geometry Semester 1, 2017-18

November 14, 2017

Contents

1	Pre	liminaries	2
	1.1	The upper half plane \mathbb{H}	2
	1.2	The Riemann sphere $\hat{\mathbb{C}}$	2
2	The	e general Möbius group	1
	2.1	The group $\mathrm{M\ddot{o}b}^+(\hat{\mathbb{C}})$	4
	2.2	Classification of Möbius transformations	5
	2.3	The group $M\ddot{o}b(\hat{\mathbb{C}})$	7
	2.4	The groups $M\ddot{o}b(\mathbb{H})$ and $M\ddot{o}b^+(\mathbb{H})$	8
3	Hyperbolic geometry		
	3.1	The upper-half plane model \mathbb{H}	9
	3.2	The Poincaré disk model \mathbb{D}	0
	3.3	Properties of hyperbolic space	2
	3.4	Hyperbolic trigonometry $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 14$	4
4	Introduction to hyperbolic surfaces 1		
	4.1	Hyperbolic structures on surfaces	5
	4.2	Geodesic triangulations and the Gauss-Bonnet Theorem 1'	7
	4.3	The universal cover of a hyperbolic surface	7

1 Preliminaries

1.1 The upper half plane \mathbb{H}

(i) As a set, the *upper half plane* is given by

$$\mathbb{H} = \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \}.$$

- (ii) A hyperbolic line in the upper half plane model is defined to be one of the following two types of subsets of 𝔄.
 - (1) The intersection of a Euclidean line perpendicular to the real line \mathbb{R} (i.e the X-axis) with \mathbb{H} .
 - (2) The intersection of a Euclidean circle centered on the real line \mathbb{R} (i.e the X-axis) with \mathbb{H} .
- (iii) Two hyperbolic lines are said to be *parallel* if they do not intersect in \mathbb{H} .
- (iv) Given a line $\ell \subset \mathbb{H}$ and point a $p \in \mathbb{H} \setminus \ell$, there exists infinitely many hyperbolic lines passing through p and parallel to ℓ . Consequently, the fifth postulate of Euclidean geometry does not hold true in hyperbolic geometry.

1.2 The Riemann sphere $\hat{\mathbb{C}}$

(i) As a set, the Riemann sphere $\hat{\mathbb{C}}$ is the union

$$\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}.$$

(ii) There is a natural extension of the stereographic projection $p: S^2 \setminus \{N\} \to \mathbb{C}$ to a map $\bar{p}: S^2 \to \hat{\mathbb{C}}$ defined by

$$\bar{p}|_{\mathbb{C}} = p \text{ and } \bar{p}(N) = \infty,$$

which is a homeomorphism. Hence, topologically $\hat{\mathbb{C}} \approx S^2$ via \bar{p} .

(iii) For a point $z \in \hat{\mathbb{C}}$, an open ball (or disk) $B_{\epsilon}(z)$ of radius ϵ centered at z is defined by

$$B_{\epsilon}(z) = \begin{cases} \{w \in \mathbb{C} : |w - z| < \epsilon\}, & \text{if } z \in \mathbb{C}, \text{ and} \\ \{w \in \mathbb{C} : |w| > \epsilon\} \cup \{\infty\}, & \text{if } z = \infty. \end{cases}$$

(iv) We define

 $\operatorname{Homeo}(\hat{\mathbb{C}}) = \{ f : \hat{\mathbb{C}} \to \hat{\mathbb{C}} : f \text{ is a homeomorphism} \}.$

The set $Homeo(\hat{\mathbb{C}})$ forms a group under composition.

(v) Example: The function $r: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ defined by

$$r(z) = \begin{cases} 1/z, & \text{if } z \in \mathbb{C}, \\ \infty, & \text{if } z = 0, \text{ and} \\ 0, & \text{if } z = \infty \end{cases}$$

is an element of $Homeo(\hat{\mathbb{C}})$.

- (vi) A *circle* in $\hat{\mathbb{C}}$ either a Euclidean circle or the union of a Euclidean line with $\{\infty\}$.
- (vii) Example: The set $\overline{\mathbb{R}} := \mathbb{R} \cup \{\infty\}$ is a circle in $\hat{\mathbb{C}}$.
- (viii) The set $\mathbb{R} := \mathbb{R} \cup \{\infty\}$ is called the *boundary at infinity* of hyperbolic space \mathbb{H} . Topologically, we can see that $\mathbb{R} \approx S^1$ by naturally extending the stereographic projection in dimension 1.
- (ix) For a set $A \subset \mathbb{H}$, the boundary at infinity is defined by

$$\partial_{\infty}(A) := \bar{A} \cap \bar{\mathbb{R}},$$

where \overline{A} is the closure of A in $\hat{\mathbb{C}}$.

(x) Two hyperbolic lines ℓ_1 and ℓ_2 are said to be *ultraparallel* if

$$\partial_{\infty}(\ell_1) \cap \partial_{\infty}(\ell_2) = \emptyset.$$

(xi) Given a point $p \in \mathbb{H}$ and a point $q \in \mathbb{R}$, there exists a unique hyperbolic line ℓ passing through p such that $\partial_{\infty}(\ell) = \{q\}$. Consequently, there is a unique circle in \mathbb{C} that contains a line ℓ in \mathbb{H} .

2 The general Möbius group

2.1 The group $M\ddot{o}b^+(\hat{\mathbb{C}})$

(i) We define

 $\operatorname{Homeo}^{c}(\hat{\mathbb{C}}) = \{ f \in \operatorname{Homeo}(\hat{\mathbb{C}}) : f \text{ maps circles in } \hat{\mathbb{C}} \text{ to circles in } \hat{\mathbb{C}} \}.$

- (ii) Homeo^c(\mathbb{C}) forms a group under composition.
- (iii) Examples:
 - (a) The map $r \in \text{Homeo}^{c}(\hat{\mathbb{C}})$.
 - (b) For $a, b \in \mathbb{C}$ and $a \neq 0$, consider the map $f \in \text{Homeo}(\hat{\mathbb{C}})$ defined by $f(z) = az + b \text{ for } z \in \mathbb{C} \text{ and } f(z_0) = z_0$

$$f(z) = az + b$$
, for $z \in \mathbb{C}$ and $f(\infty) = \infty$

Then $f \in \text{Homeo}^{c}(\hat{\mathbb{C}})$.

(iv) A Möbius transformation is a function $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ of the form

$$m(z) = \frac{az+b}{cz+d}$$
, where $a, b, c, d \in \mathbb{C}$ and $ad - bc \neq 0$.

(v) Consider a Möbius transformation $m(z) = \frac{az+b}{cz+d}$.

- (a) If c = 0, then $m(z) = \frac{a}{d}z + \frac{b}{d}$.
- (b) If $c \neq 0$, then $m(z) = (f \circ r \circ g)(z)$, where $g(z) = c^2 z + cd$ and $f(z) = -(ad bc)z + \frac{a}{c}$, and $f(\infty) = \infty = g(\infty)$.

Consequently, $m \in \text{Homeo}^{c}(\hat{\mathbb{C}})$.

- (vi) The set of all Möbius transformations on $\hat{\mathbb{C}}$ forms a group under composition, which we denote by $\text{M\"ob}^+(\hat{\mathbb{C}})$. Clearly, $\text{M\"ob}^+(\hat{\mathbb{C}}) \subset \text{Homeo}^c(\hat{\mathbb{C}})$.
- (vii) If $m \in \text{M\"ob}^+(\hat{\mathbb{C}})$ fixes any three distinct points in $\hat{\mathbb{C}}$, then m is the identity.

(viii) Given four distinct points z_1 , z_2 , z_3 , and z_4 in \mathbb{C} , we define the cross ratio of z_1 , z_2 , z_3 , and z_4 by

$$[z_1, z_2; z_3, z_4] = \frac{(z_1 - z_4)(z_3 - z_2)}{(z_1 - z_2)(z_3 - z_4)}$$

If one of the z_k (say z_1) equals ∞ , then we define the cross ratio by continuity, that is,

$$[\infty, z_2; z_3, z_4] = \lim_{z \to \infty} [z, z_2; z_3, z_4] = \frac{z_3 - z_2}{z_3 - z_4}.$$

(ix) Given a triple (z_1, z_2, z_3) of distinct points in $\hat{\mathbb{C}}$, there exists a unique $m \in \text{M\"ob}^+(\hat{\mathbb{C}})$ such that $(m(z_1), m(z_2), m(z_3)) = (0, 1, \infty)$, which is given by

$$m(z) = [z, z_3; z_2, z_1]$$

Consequently, the natural action of $\text{M\"ob}^+(\hat{\mathbb{C}})$ on the set of \mathcal{T} of triple of distinct points in $\hat{\mathbb{C}}$ is uniquely transitive.

(x) $\text{M\"ob}^+(\hat{\mathbb{C}})$ acts transitively on the set \mathcal{C} of circles in $\hat{\mathbb{C}}$, and on the set \mathcal{D} of disks in $\hat{\mathbb{C}}$.

2.2 Classification of Möbius transformations

- (i) Two Möbius transformations $m_1, m_2 \in \text{Möb}^+(\hat{\mathbb{C}})$ are said to be *conjugate* if there exists $p \in \text{Möb}^+(\hat{\mathbb{C}})$ such that $m_2 = p \circ m_1 \circ p^{-1}$.
- (ii) As $\frac{az+b}{cz+d} = z$ yields a quadratic equation in z, an $m \in \text{M\"ob}^+(\hat{\mathbb{C}})$ can have at most 2 fixed points in $\hat{\mathbb{C}}$.
- (iii) A Möbius transformation $m \in \text{Möb}^+(\hat{\mathbb{C}})$ is said to be:
 - (a) *parabolic*, if has only one fixed point in $\hat{\mathbb{C}}$ and is conjugate to the map m'(z) = z + 1.
 - (b) *elliptic*, if has two fixed points in $\hat{\mathbb{C}}$ and is conjugate to the map m'(z) = az, where |a| = 1, that is, $a = e^{i2\theta}$, for some $\theta \in [0, \pi)$.
 - (c) *loxodromic*, if has two fixed points in \mathbb{C} and is conjugate to the map m'(z) = az, where $|a| \neq 1$, that is, $a = re^{i2\theta}$, for some r > 0 and $\theta \in [0, \pi)$.

(iv) We can view a Möbius transformation $m(z) = \frac{az+b}{cz+d}$, as the map

$$z \xrightarrow{m} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z \\ 1 \end{pmatrix}$$
, where $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{GL}(2, \mathbb{C}).$

Hence, there exists a natural surjective map

$$\varphi: \mathrm{GL}(2,\mathbb{C}) \to \mathrm{M\ddot{o}b}^+(\widehat{\mathbb{C}})$$

defined by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \xrightarrow{\varphi} (z \mapsto \frac{az+b}{cz+d}),$$

where φ is a homomorphism. Moreover, we have that

$$\operatorname{Ker} \varphi = \{ kI_2 : k \in \mathbb{C} \}.$$

Consequently,

$$\operatorname{M\ddot{o}b}^+(\hat{\mathbb{C}}) \cong \operatorname{PGL}(2,\mathbb{C}) = \operatorname{PSL}(2,\mathbb{C}).$$

(v) Given a Möbius tranformation $m(z) = \frac{az+b}{cz+d}$, the equivalent Möbius tranformation

$$m(z) = rac{rac{a}{D}z + rac{b}{D}}{rac{c}{D}z + rac{d}{D}}$$
, where $D = ad - bc$,

is called the *normalized form* of m.

(vi) Given a Möbius tranformation $m(z) = \frac{az+b}{cz+d}$ in its normalized form, we define

$$\operatorname{Trace}^2(m) := (a+d)^2.$$

- (vii) Let m be a Möbius transformation that is not the identity. Then:
 - (i) m is parabolic if, and only if $Trace^2(m) = 4$.
 - (ii) m is elliptic if, and only if $\operatorname{Trace}^2(m) \in [0, 4)$.
 - (iii) *m* is loxodromic if, and only if either $\operatorname{Im}(\operatorname{Trace}^2(m)) \neq 0$ or $\operatorname{Trace}^2(m) \in (-\infty, 0) \cup (4, \infty).$

2.3 The group $M\ddot{o}b(\hat{\mathbb{C}})$

(i) The complex conjugation map $\mathscr{C}: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is defined by

$$\mathscr{C}(z) = \overline{z}, \text{ for } z \in \mathbb{C} \text{ and } \mathscr{C}(\infty) = \infty.$$

- (ii) The map \mathscr{C} is a reflection through the circle $\mathbb{\bar{R}} \subset \mathbb{\hat{C}}$ and clearly, $\mathscr{C} \in \operatorname{Homeo}^{c}(\mathbb{\hat{C}}) \setminus \operatorname{M\"ob}^{+}(\mathbb{\hat{C}}).$
- (iii) Given a circle $A \subset \hat{\mathbb{C}}$, consider a $m \in \text{M\"ob}(\hat{\mathbb{C}})$ such that $m(\bar{\mathbb{R}}) = A$. Then we define a *reflection through* A as the map

$$\mathscr{C}_A(z) = (m \circ \mathscr{C} \circ m^{-1})(z), \text{ for } z \in \hat{\mathbb{C}}.$$

- (a) Note that $\mathscr{C}_A(z)$ is well defined as its independent of the choice of m.
- (b) Every element in Möb(Ĉ) is a composition of finitely many reflections through circles.
- (iv) The general Möbius group $M\"{o}b(\widehat{\mathbb{C}})$ is defined as the subgroup of $Homeo^{c}(\widehat{\mathbb{C}})$ generated by $M\"{o}b^{+}(\widehat{\mathbb{C}})$ and \mathscr{C} . Thus, by definition, $M\"{o}b(\widehat{\mathbb{C}}) \subset Homeo^{c}(\widehat{\mathbb{C}})$.
- (v) Every $m \in \text{M\"ob}(\hat{\mathbb{C}})$ either has the form $m(z) = \frac{az+b}{cz+d}$ or has the form $m(z) = \frac{a\overline{z}+b}{c\overline{z}+d}$, for $a, b, c, d \in \mathbb{C}$ and $ad bc \neq 0$.
- (vi) $\text{M\"ob}(\hat{\mathbb{C}}) = \text{Homeo}^c(\hat{\mathbb{C}}).$
- (vii) Let S_1 and S_2 be surfaces. Then a map $f : S_1 \to S_2$ is said to be conformal if it preserves the angles, that is, given a two curves c_1 and c_2 in S_1 that intersect at $P \in S_1$ with an angle θ , $f(c_1)$ and $f(c_2)$ intersect at the same angle θ at f(P).
- (viii) A conformal map on an oriented surface is said to be *directly confor*mal if it preserves orientation, and *indirectly conformal* if it reverses orientation.
- (ix) Examples of conformal maps.
 - (a) Any self-homeomorphism of a closed orientable surface that is realizable as a rotation of the surface about an axis is directly conformal.

- (b) Any self-homeomorphism of a closed orientable surface that is realizable as a reflection of the surface through a plane is indirectly conformal.
- (c) The \mathscr{C} is an indirectly conformal map of $\hat{\mathbb{C}}$.
- (x) A map $f : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is conformal at ∞ if, and only if $r \circ f$ is conformal at 0.
- (xi) Every element $m \in \text{M\"ob}^+(\hat{\mathbb{C}})$ is directly conformal, while element $m \in \text{M\"ob}(\hat{\mathbb{C}}) \setminus \text{M\"ob}^+(\hat{\mathbb{C}})$ is indirectly conformal.

2.4 The groups $M\ddot{o}b(\mathbb{H})$ and $M\ddot{o}b^+(\mathbb{H})$

- (i) We define
 - (a) $\operatorname{M\ddot{o}b}(\mathbb{H}) = \{ m \in \operatorname{M\ddot{o}b}(\hat{\mathbb{C}}) \mid m(\mathbb{H}) = \mathbb{H} \}.$
 - (b) $\operatorname{M\"ob}^+(\mathbb{H}) = \{ m \in \operatorname{M\"ob}^+(\hat{\mathbb{C}}) \, | \, m(\mathbb{H}) = \mathbb{H} \}.$
 - (c) $\operatorname{M\ddot{o}b}(\overline{\mathbb{R}}) = \{ m \in \operatorname{M\ddot{o}b}(\widehat{\mathbb{C}}) \mid m(\overline{\mathbb{R}}) = \overline{\mathbb{R}} \}.$
 - (d) $\operatorname{M\"ob}^+(\bar{\mathbb{R}}) = \{ m \in \operatorname{M\"ob}^+(\hat{\mathbb{C}}) \mid m(\bar{\mathbb{R}}) = \bar{\mathbb{R}} \}.$
- (ii) Every element of $M\ddot{o}b(\mathbb{R})$ has one of the following forms:

(a)
$$m(z) = \frac{az+b}{cz+d}$$
 with $a, b, c, d \in \mathbb{R}$ (or $i \mathbb{R}$) and $ad - bc = 1$.

(b)
$$m(z) = \frac{az+b}{c\bar{z}+d}$$
 with $a, b, c, d \in \mathbb{R}$ (or $i \mathbb{R}$) and $ad - bc = 1$.

(iii) Every element of $M\ddot{o}b^+(\mathbb{H})$ has the form

$$m(z) = \frac{az+b}{cz+d}$$
 with $a, b, c, d \in \mathbb{R}$ and $ad-bc = 1$,

while every element of $M\ddot{o}b(\mathbb{H}) \setminus M\ddot{o}b^+(\mathbb{H})$ has the form

$$m(z) = \frac{a\overline{z} + b}{c\overline{z} + d}$$
 with $a, b, c, d \in i \mathbb{R}$ and $ad - bc = 1$

Consequently, $\text{M\"ob}^+(\mathbb{H}) \cong \text{PSL}(2, \mathbb{R}).$

3 Hyperbolic geometry

3.1 The upper-half plane model \mathbb{H}

(i) We define the *metric for the upper half plane model* by

$$ds^2 = \frac{dx^2 + dy^2}{y^2}.$$

(ii) If $\gamma : [a, b] \to \mathbb{H}$ is a path in \mathbb{H} that is parametrized in [a, b] with $\gamma(t) = x(t) + iy(t)$, then the length $\ell(\gamma)$ of the path γ is defined by

$$\ell_{\mathbb{H}}(\gamma) := \int_{a}^{b} \frac{1}{y(t)} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt.$$

(iii) Given two points $P, Q \in \mathbb{H}$, the distance $d_{\mathbb{H}}(P, Q)$ between P and Q is defined by

$$d_{\mathbb{H}}(P,Q) := \inf \ell_{\mathbb{H}}(\gamma),$$

where the infimum is taken over all paths joining P and Q.

(iv) Let (M, d) be a metric space, and let I = [a, b]. A path $\gamma : I \to M$ is said to be a *geodesic* from a to b if there is a constant $c \ge 0$ such that for any $t \in I$ there exists a neighborhood J of t in I such that for any $t_1, t_2 \in J$, we have

$$d(\gamma(t_1), \gamma(t_2)) = c |t_1 - t_2|.$$

In other words, the path $\gamma: I \to M$ is a geodesic if it is locally distance minimizing.

- (v) Let $P, Q \in \mathbb{H}$.
 - (a) If Re P = Re Q, then there is a unique geodesic from P to Q given by the vertical line segment from P to Q.
 - (b) If $Re P \neq Re Q$, then there is a unique geodesic from P and Q given by the arc joining P to Q of the unique line in \mathbb{H} (semicircle) with center in \mathbb{R} and passing through P and Q.

(vi) All vertical lines are geodesics in \mathbb{H} . Moreover, if b > a, then for points $x + ia, x + ib \in \mathbb{H}$, we have

$$d_{\mathbb{H}}(x+ia, x+ib) = \log(b/a).$$

(vii) Let Isom⁺(ℍ) denote the group of orientation-preserving isometries of ℍ. Then

$$\operatorname{Isom}^+(\mathbb{H}) \cong \operatorname{PSL}(2,\mathbb{R}).$$

(viii) Given points $P, Q \in \mathbb{H}$, let P' and Q' be the end points in \mathbb{R} of the unique geodesic in \mathbb{H} joining P to Q. Then

$$d_{\mathbb{H}}(P,Q) = \log[P',Q,P,Q'].$$

(ix) Given two points $z_1, z_2 \in \mathbb{H}$, we have

(a)
$$d_{\mathbb{H}}(z_1, z_2) = \log \frac{|z_1 - \bar{z_2}| + |z_1 - z_2|}{|z_1 - \bar{z_2}| - |z_1 - z_2|}$$

(b) $\cosh d_{\mathbb{H}}(z_1, z_2) = 1 + \frac{|z_1 - z_2|^2}{2\mathrm{Im}z_1\mathrm{Im}z_2}.$

3.2 The Poincaré disk model \mathbb{D}

(i) As a set, the *Poincaré disk* \mathbb{D} is defined by

$$\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}.$$

(ii) The metric in the *Poincaré disk model* is defined by

$$ds^{2} = \frac{4(dx^{2} + dy^{2})}{(1 - (x^{2} + y^{2}))^{2}}.$$

(iii) If $\gamma : [a, b] \to \mathbb{D}$ is a path in \mathbb{D} that is parametrized in [a, b] with $\gamma(t) = x(t) + iy(t)$, then the length $\ell(\gamma)$ of the path γ is defined by

$$\ell_{\mathbb{D}}(\gamma) := \int_{a}^{b} \frac{2}{1 - r^{2}} \sqrt{\left(\frac{dr}{dt}\right)^{2} + r\left(\frac{d\theta}{dt}\right)^{2}} dt.$$

(iv) Given two points $P, Q \in \mathbb{H}$, the distance $d_{\mathbb{D}}(P, Q)$ between P and Q is defined by

$$d_{\mathbb{D}}(P,Q) := \inf \ell_{\mathbb{D}}(\gamma)$$

where the infimum is taken over all paths joining P and Q.

(v) Let $\text{M\"ob}^+(\mathbb{D}) = \{m \in \text{M\"ob}^+(\hat{\mathbb{C}}) : m(\mathbb{D}) = \mathbb{D}\}$. Each $m \in \text{M\"ob}^+(\mathbb{D})$ has the form

$$m(z) = \frac{e^{i\theta}(z-a)}{1-\bar{a}z}$$
 where $a \in \mathbb{D}$,

or equivalently has the form

$$m(z) = \frac{az+b}{\bar{b}z+\bar{a}}$$
, with $|a|^2 - |b|^2 = 1$.

Consequently,

$$\operatorname{M\ddot{o}b}^+(\mathbb{D}) \cong \operatorname{PSU}(1,1).$$

(vi) The Cayley transformation $C : \mathbb{H} \to \mathbb{D}$ defined by

$$z \xrightarrow{C} \frac{z-i}{z+i}$$

is a conformal isometry.

(vii) Let $P, Q \in \mathbb{D}$.

- (a) If P, Q are on the same diameter of D, then the unique geodesic in D joining P to Q is given by the Euclidean line segment joining P to Q (along the diameter).
- (b) If P, Q do not lie on the same diameter, then the unique geodesic in \mathbb{D} joining P to Q is the arc of the circle orthogonal to $S^1 = \partial \mathbb{D}$ joining P to Q.
- (viii) All radial lines are geodesics in \mathbb{D} . In particular, given $a \in \mathbb{D}$, we have

$$d_{\mathbb{D}}(0,a) = \log\left(\frac{1+|a|}{1-|a|}\right).$$

(ix) Given points $P, Q \in \mathbb{D}$, let P' and Q' be the end points in S^1 of the unique geodesic in \mathbb{D} joining P to Q. Then

$$d_{\mathbb{D}}(P,Q) = \log[P',Q,P,Q'].$$

(x) Given two points $z_1, z_2 \in \mathbb{D}$, we have

(a)
$$d_{\mathbb{D}}(z_1, z_2) = \log \frac{|1 - z_1 \bar{z}_2| + |z_1 - z_2|}{|1 - z_1 \bar{z}_2| - |z_1 - z_2|}.$$

(b) $\cosh^2(d_{\mathbb{D}}(z_1, z_2)/2) = \frac{|1 - z_1 \bar{z}_2|^2}{(1 - |z_1|^2)(1 - |z_2|^2)}.$

3.3 Properties of hyperbolic space

- (i) The spaces $(\mathbb{H}, d_{\mathbb{H}})$ and $(\mathbb{D}, d_{\mathbb{D}})$ have constant negative curvature -1.
- (ii) (a) Given x ∈ ∂ H, we have d_H(x, x + ti) = ∞, for any t > 0.
 (b) Given x ∈ ∂ D, we have d_D(x, y) = ∞, for any y ∈ D.
- (iii) The group $\text{Isom}^+(\mathbb{H})$ (or $\text{Isom}^+(\mathbb{D})$) acts transitively on:
 - (a) \mathbb{H} (or \mathbb{D}).
 - (b) Hyperbolic lines in \mathbb{H} (or \mathbb{D}).
 - (c) Equidistant pairs of points in \mathbb{H} (or \mathbb{D}).
 - (d) Ordered triples in $\partial \mathbb{H} = \overline{\mathbb{R}}$ (or $\partial \mathbb{D} = S^1$).
- (iv) Let $m \in \text{M\"ob}^+(\mathbb{H})$ be nontrivial. Then it follows from classification of isometries in $\text{M\"ob}^+(\hat{\mathbb{C}})$ that:
 - (a) m is parabolic if, and only if m has one fixed point in \mathbb{R} . Furthermore, m is conjugate in $\text{M\"ob}(\mathbb{H})$ to the map q(z) = z + 1. Equivalently, m is parabolic if, and only if $\text{Trace}^2(m) = 4$.
 - (b) m is elliptic if, and only if m has one fixed point in \mathbb{H} . Furthermore, m is conjugate in $\mathrm{M\ddot{o}b}^+(\mathbb{H})$ to a rotation by θ (i.e a map of the form $\begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix}$, for some $\theta \in \mathbb{R}$). Equivalently, m is elliptic if, and only if $\mathrm{Trace}^2(m) < 4$.
 - (c) m is loxodromic if, and only if m has two fixed points in \mathbb{R} . Furthermore, m is conjugate in $\text{M\"ob}^+(\mathbb{H})$ to the map q(z) = kz, for some k > 0. Equivalently, m is hyperbolic if, and only if $\text{Trace}^2(m) > 4$.

- (v) Let $C(z_0, r)$ denoted the hyperbolic circle with center $z_0 \in \mathbb{D}$ and radius r > 0. Then C(0, r) coincides with a Euclidean circle with center 0 and radius $\rho = \tanh(r/2)$.
- (vi) The circumference of a hyperbolic circle in \mathbb{D} of radius ρ is $2\pi \sinh(\rho)$. The area of the hyperbolic disk of radius ρ if $4\pi \sinh^2(\rho/2)$. (Note that both circumference and area grow exponentially with the radius.)
- (vii) Since hyperbolic isometries map Euclidean circles to Euclidean circles, the hyperbolic circle $C(z_0, r)$ will coincide with a Euclidean circle, whose center does not necessarily coincide with the hyperbolic center. As this reasoning extends to hyperbolic disks enclosed by these circles, the topologies $(\mathbb{D}, d_{\mathbb{D}})$ and \mathbb{R}^2 have the same basic open sets, and hence they are homeomorphic.
- (viii) There exists a unique perpendicular from a point $P \in \mathbb{D}$ (or \mathbb{H}) to a hyperbolic line $L \subset \mathbb{D}$ (or \mathbb{H}) that realizes the distance between them.
- (ix) A perpendicular projection onto a hyperbolic line L in \mathbb{H} (or \mathbb{D}) strictly reduces the distance between points.
- (x) Let L and L' be disjoint hyperbolic lines which do not meet at $\partial \mathbb{H}$ (or $\partial \mathbb{D}$). Then L and L' have a unique common perpendicular that realizes the distance between them. Moreover, if the two lines have a common end point in $\partial \mathbb{H}$ (or $\partial \mathbb{D}$), then $d_{\mathbb{H}}(L, L') = 0$.
- (xi) The set of all points in \mathbb{H} (or \mathbb{D}) which are at a fixed distance d from a given line L is a circle in $\hat{\mathbb{C}}$ having the same endpoints as L on $\partial \mathbb{H}$ (or $\partial \mathbb{D}$) making an angle $\theta = \theta(d)$ that is uniquely determined by d.
- (xii) An *horocycle* is the limit of a hyperbolic circle as its center approaches $\partial \mathbb{H}$.
- (xiii) In \mathbb{H} , horocircles are either:
 - (a) Horizonal lines, if the tangency point is ∞ , or
 - (b) Circles that are tangent to \mathbb{R} .
- (xiv) The length of a horocircle between two points is exponentially larger than the hyperbolic distance between them.

3.4 Hyperbolic trigonometry

- (i) The sum of the angles of a hyperbolic triangle is strictly less than π . Consequently, the sum of the angles of a hyperbolic *n*-gon is strictly less than $(n-2)\pi$.
- (ii) Let P be a point that is at a distance d from a hyperbolic line L. Then there is a limiting value θ to the angle made by lines L' through P(with the perpendicular from P to L) not meeting L called the *angle* of parallelism.
- (iii) The angle of parallelism θ can be computed by considering a triangle with angles 0, $\pi/2$, θ . In such a triangle, we have

$$\cosh d = \csc \theta.$$

Equivalently, we have

$$\sinh d = \cot \theta$$
 or $\tanh d = \cos \theta$.

- (iv) There is an upper bound to the length of the altitude of any hyperbolic isosceles right-angled triangle called the *Schweikart's constant*, which is given by $\log(1 + \sqrt{2})$.
- (v) (Pythagoras Theorem) In a right angled hyperbolic triangle whose sides have lengths a, b, and c, where c is the hypotenuse, we have

$$\cosh c = \cosh a \cosh b.$$

(vi) (Gauss-Bonnet Theorem) The area of a hyperbolic triangle with angles α , β , and γ is given by

$$\pi - (\alpha + \beta + \gamma).$$

Consequently, the area a hyperbolic *n*-gon with internal angles α_i , for $1 \leq i \leq n$ is

$$(n-2)\pi - \sum_{i=1}^{n} \alpha_i.$$

(vii) Two hyperbolic triangles T and T' are congruent if there exists $m \in M\ddot{o}b(\mathbb{H})$ such that m(T) = T'.

- (viii) Any two hyperbolic triangles with the same internal angles are congruent.
- (ix) The following conditions for congruency of triangles in Euclidean geometry also hold true in hyperbolic geometry:

AAA, SAS, SSS, SAA, and RHS.

- (x) For any three real numbers α , β , $\gamma \ge 0$ with $\alpha + \beta + \gamma < \pi$, there exists an hyperbolic triangle with these numbers as internal angles.
- (xi) For $n \ge 3$ and $\theta \in (0, (n-2)\pi/n)$, there exists a regular hyperbolic *n*-gon with internal angle θ .
- (xii) Let ABC be a hyperbolic triangle with sides of lengths a, b, c opposite to internal angles α, β, γ at vertices A, B, C respectively. Then
 - (a) If $\gamma = \pi/2$, then

 $\cos \beta = \tanh a / \tanh c$, $\sin \beta = \sinh b / \sinh c$, $\tan \beta = \tanh b / \sinh a$.

(b) The hyperbolic sine law is given by

$$\frac{\sinh a}{\sin \alpha} = \frac{\sinh b}{\sin \beta} = \frac{\sinh c}{\sin \gamma}.$$

(c) The first hyperbolic cosine law is given by

$$\cos \gamma = \frac{\cosh a \cosh b - \cosh c}{\sinh a \sinh b}.$$

(d) The second hyperbolic cosine law is given by

$$\cos c = \frac{\cos \gamma + \cos \alpha \cos \beta}{\sin \alpha \sin \beta}$$

4 Introduction to hyperbolic surfaces

4.1 Hyperbolic structures on surfaces

(i) A hyperbolic surface is a smooth surface with a Riemannian metric such that each point on the surface has a neighborhood that is isometric to an open neighborhood of \mathbb{H} .

- (ii) A hyperbolic structure on a surface S is an atlas of charts on S such that:
 - (a) The image of every coordinate chart is homeomorphic to a disk in 𝔄.
 - (b) The overlap functions are hyperbolic isometries.
 - (c) The atlas is maximal.
- (iv) Let P be a convex geodesic polygon. A labeling for each edge of P by a letter (or a symbol) and an arrow (a direction) is called a *decoration* for P.
- (v) A gluing recipe for a hyperbolic surface is a finite list $\{P_1, \ldots, P_n\}$ of decorated polygons such that:
 - (a) Every symbol (or letter) used as a label appears exactly twice.
 - (b) If two edges have the same label, then they have the same hyperbolic length.
 - (c) Any complete circuit adds up to 2π .
- (vi) Any gluing recipe gives rise to a surface with a hyperbolic structure (i.e. a hyperbolic surface).
- (vii) Examples.
- (a) For $g \geq 2$, consider a regular convex decorated hyperbolic 4g-gon P_g with edges labeled using the letters in $\{a_i, b_i | 1 \leq i \leq g\}$ such that $\partial P_g = \prod_{i=1}^g [a_i, b_i]$. This decorated polygon P_g gives rise to a hyperbolic structure on the closed orientable surface S_q of genus g.
- (b) For $g \ge 2$, consider a regular convex decorated hyperbolic 4g + 2-gon P_g with edges labeled using the letters in $\{a_i | 1 \le i \le 2g + 1\}$ such that $\partial P_g = \prod_{i=1}^{2g+1} a_i \prod_{i=1}^{2g+1} a_i^{-1}$. This decorated polygon P_g gives rise to another hyperbolic structure on S_g that is non-isometric to the structure in (a).

4.2 Geodesic triangulations and the Gauss-Bonnet Theorem

(i) Let $X \subset \mathbb{H}$ be a finite set. For each $p \in X$, let

$$N_p = \{ y \in \mathbb{H} : d_{\mathbb{H}}(y, p) = d_{\mathbb{H}}(x, y), \forall x \in X \}.$$

Then

- (a) N_p is convex.
- (b) If N_p is bounded, then N_p is the interior of a convex hyperbolic polygon.
- (ii) A *geodesic triangulation* of a hyperbolic surface is a decomposition of the surface into a finite union of hyperbolic geodesic triangles.
- (iii) Every hyperbolic surface has a geodesic triangulation.
- (iv) (Gauss-Bonnet) The hyperbolic area A(S) of a compact hyperbolic surface S is given by

$$A(S) = -2\pi\chi(S),$$

where $\chi(S)$ is the Euler characteristic of the surface. In particular, if S is hyperbolic, then $\chi(S) < 0$.

(v) For $g \ge 0$, let $S_{g,b}$ be the surface of genus g with b boundary components (i.e. with b disjoint disks removed). If $S_{g,b}$ is hyperbolic, then

$$A(S_{g,b}) = -2\pi(2 - 2g - b).$$

Consequently, if $S_{g,b}$ is hyperbolic, then 2g + b > 2.

4.3 The universal cover of a hyperbolic surface

- (i) A Riemannian cover of a Riemannian manifold X is a Riemannian manifold \tilde{X} such that the covering map $p: \tilde{X} \to X$ is a local isometry.
- (ii) Suppose that X is a Riemannian manifold with a covering space $p : \tilde{X} \to X$. Then there exists a unique (namely the pullback under p) on \tilde{X} such that $p : \tilde{X} \to X$ is a local isometry.

- (iii) Let $p: \tilde{X} \to X$ be a Riemannian covering space. If X is complete, then so is \tilde{X} .
- (iv) (Hadamard). Let X be a complete simply connected surface that is locally isometric to \mathbb{H} . Then X is globally isometric to \mathbb{H} .
- (v) A complete hyperbolic surface is universally covered by \mathbb{H} .
- (vi) A simple closed curve c on a hyperbolic surface $S = S_{g,b}$ is called *essential*, if its free homotopy class [c] does not contain the trivial curve or any of the components of $\partial S_{g,b}$ as its representatives.
- (vii) Every free homotopy class [c] of an essential simple closed c on a hyperbolic surface $S = S_{g,b}$ has a unique geodesic representative.